Object structure

Title:

Hydrochemical differentiation of selected reservoirs in Carpathian Mts. and Eastern European Lowland

Subtitle:

Geographia Polonica Vol. 93 No. 1 (2020)

Creator:

Kijowska-Strugała, Małgorzata. Autor https://orcid.org/0000-0002-7539-8143 - ; Wiejaczka, Łukasz. Autor ; Grigoryeva, Irina. Autor https://orcid.org/0000-0003-2538-5931 - ; Komissarov, Aleksey. Autor https://orcid.org/0000-0002-8364-1756 -

Publisher:

IGiPZ PAN

Place of publishing:

Warszawa

Date issued/created:

2020

Description:

24 cm

Subject and Keywords:

chemizm wód ; zbiorniki nizinne ; zbiorniki górskie ; dorzecze górnej Wołgi ; dorzecze Wisły

Abstract:

The aim of the analysis was to compare physicochemical parameters and chemical composition of two groups of artificial reservoirs, mountain and lowland ones, characterised by different parameters and functions. Three mountain artificial reservoirs (Klimkówka, Dobczyce, Czorsztyn) located in the Upper Vistula basin (Carpathian Mountains in Poland) and three lowland reservoirs (Ivankovo, Verhnevolzhskoye, Vyshnevolotzkoye) located in the Upper Volga basin (Eastern European Lowland in Russia) were selected for the study. Data for the summer season in 2009-2013 were used in the analysis. Mountain reservoirs display high water concentrations of sulphates, chlorides and biogenic nitrates, and lower concentrations of ammonium and oxygen indicator in relation to lowland reservoirs. Similar concentrations of phosphates were noticed in both the mountain and the lowland reservoirs. The hydrochemical differentiation between the individual mountain reservoirs was small, and statistically significant differences only occurred for SEC. Greater differentiation of the hydrochemical parameters was found among the lowland reservoirs. Statistically significant differences were demonstrated with regard to SEC, Cl- and NO3-.

References:

Baker, A. (2003). Land use and water quality. Hydrological Processes, 17(12), 2499-2501. https://doi.org/10.1002/hyp.5140 ; Cebulska, M., Twardosz, R. (2014). Anomalnie wysokie sezonowe i roczne opady atmosferyczne w polskich Karpatach i na ich przedpolu (1881-2010). Przegląd Geofizyczny, 3-4, 111-126. ; Ceron, J.C., Grande, J.A., De La Torre, M.L., Borrego, J., Santisteban, M., Valente, T. (2014). Hydrochemical characterization of an acid mine drainage-affected reservoir: the Sancho Reservoir, Huelva, southwest Spain. Hydrological Sciences Journal, 59(6), 1213-1224. https://doi.org/10.1080/02626667.2013.834341 ; CLC. (2014). Corine Land Cover dataset for 1990-2000-2006. http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2 ; Ding, J., Jiang, Y., Fu, L., Liu, Q., Peng, Q., Kang, M. (2015). Impacts of land use on surface water quality in a subtropical River Basin: a case study of the Dongjiang River Basin, Southeastern China. Water, 7(12), 4427-4445. https://doi.org/10.3390/w7084427 ; Dumont, H.J. (1999). The species richness of reservoir plankton and the effect of reservoirs on plankton dispersal (with particular on rotifers and cladocerans). In: Tundisi J. G., Straskraba M., (Eds.), Theoretical Reservoir Ecology and its Application (pp. 477-491). Rio de Janeiro: Brazilian Academy of Sciences. ; Fu, Q., Zheng, B., Zhao, X., Wang, L., Liu, C. (2012). Ammonia pollution characteristics of centralized drinking water sources in China. Journal of Environmental Sciences, 24(10), 1739-1743. https://doi.org/10.1016/s1001-0742(11)61011-5 ; Georgieva, N., Yaneva, Z., Dospatliev, L. (2010). Analyses of natural water quality in Stara Zagora region according the parameters sulfates and chlorides. Trakia Journal of Sciences, 8, 517-524. ; Gravenhorst, G., Kiely, G., Tishenko, A., Zvetkov, V.P., Cermak, J., Gurtz, J. (2000). The response of the water flows of the boreal forest region at the Volga'source area to climatic and land-use changes (Volgaforest). Final report: EU-Project INCO - COPERNICUS. ; Hannan, H.H. (1979). Chemical modifications in reservoir-regulated streams, In J.V. Ward, J. A. Stanford (Eds.), The Ecology of Regulated Streams. Boston, MA: Springer. https://doi.org/10.1007/978-1-4684-8613-1_6 ; Hou, W., Sun, S., Wang, M., Li, X., Zhang, N., Xin, X., … Jia, R. (2016). Assessing water quality of five typical reservoirs in lower reaches of Yellow River, China: using a water quality index method. Ecological indicators, 61, 309-316. https://doi.org/10.1016/j.ecolind.2015.09.030 ; Jachniak, E., Jaguś, A., Młyniuk, A., Nycz, B., (2019). The quality problems of the dammed water in the mountain forest catchment. Journal of Ecological Engineering, 20(5), 165-171. https://doi.org/10.12911/22998993/105367 ; Jekatierynczuk-Rudczyk, E., Gorniak, A., Zielinski, P., Dziemian, J. (2002). Daily dynamics of water chemistry in a lowland polyhumic dam reservoir. Polish Journal of Environmental Studies, 11, 521-526. ; Jeon, J.H., Yoon, C.G., Ham, J.H., Jun, K.W. (2004). Model development for nutrient estimates from paddy rice fields in Korea. Journal of Environmental Science and Health. Part B - Pesticides, Food Contaminants, and Agricultural Wastes, 39(5-6), 845-860. https://doi.org/10.1081/lesb-200030892 ; Kennedy, R.H., Walker, W.W., (1990). Reservoir nutrient dynamics. Reservoir limnology: Ecological perspectives. New York: John Wiley and Sons. ; Kijowska-Strugała, M., Wiejaczka, Ł., Kozłowski, R. (2016). Influence of reservoirs on the concentration of nutrients in the water of mountain rivers. Ecological Chemistry Engineering S,. 23(3), 413-424. https://doi.org/10.1515/eces-2016-0029 ; Kopacz, M., Drzewiecki, W., Twardy, S. (2011). Badania nad zawartością zawiesiny ogólnej w wodach powierzchniowych zlewni Raby zasilających Zbiornik Dobczycki. Nauka Przyroda Technologie, 5, 1-9. ; Kopacz, M., Twardy, S. (2012). Gospodarka wodno-ściekowa w zlewni górnego Dunajca na tle przeobrażeń społeczno-strukturalnych i jakości wód powierzchniowych. Woda-Środowisko-Obszary Wiejskie, vol. 12, pp. 103-121. ; Köppen, W.P. (1931). Grundriss der Klimakunde. Berlin: Walter de Gruyter. https://doi.org/10.1515/9783111667751 ; Lantsova, I.V., Grigor'eva, I.L., Tikhomirov, O.A. (2005). Geoenvironmental problems of recreational use of the Ivankovo Reservoir. Water Resources, 32(1), 107-113. https://doi.org/10.1007/s11268-005-0015-2 ; Lee, S.W., Hwang, S.J., Lee, S.B., Hwang, H.S., Sung, H.C. (2009). Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape Urban Plan, 92(2), 80-89. https://doi.org/10.1016/j.landurbplan.2009.02.008 ; Leslie, D., Lyons, W. (2018). Variations in dissolved nitrate, chloride, and sulfate in precipitation, reservoir, and tap waters, Columbus, Ohio. International Journal of Environmental Research and Public Health, 15(8), p. 1752. https://doi.org/10.3390/ijerph15081752 ; Li, S., Ye, C., Zhang, Q. (2017). 11-Year change in water chemistry of large freshwater Reservoir Danjiangkou, China. Journal of Hydrology, 551, 508-517. https://doi.org/10.1016/j.jhydrol.2017.05.058 ; Major, M., Cieśliński, R. (2017). Impact of hydrometeorological conditions on the chemical composition of water in closed-basin kettle ponds: a comparative study of two postglacial areas. Journal of Elementology, 22(1), 151-167. https://doi.org/10.5601/jelem.2016.21.1.1009 ; Meng, W., Zhang, N., Zhang, Y., Zheng, B. (2009). Integrated assessment of river health based on water quality, aquatic life and physical habitat. Journal of Environmental Sciences, 21(8), 1017-1027. https://doi.org/10.1016/s1001-0742(08)62377-3 ; Mihailova, P., Traykov, I., Tosheva, A., Nachev, M. (2013). Changes in biological and physicochemical parameters of river water in a small hydropower reservoir cascade. Bulgarian Journal of Agricultural Science, 19(2), 286-289. ; Müller, B., Gächter, R. (2012). Increasing chloride concentrations in Lake Constance: Characterization of sources and estimation of loads. Aquatic Sciences, 74(1), 101-112. https://doi.org/10.1007/s00027-011-0200-0 ; Obeidat, S.M., Alomary, A., Sekhaneh, W., Al-momani, I., Hamid, A.J.A.A. (2011). Assessment of water quality in four main water reservoirs in Northern Jordan. International Journal of Chemistry, 3(2), 79-87. https://doi.org/10.5539/ijc.v3n2p79 ; Palmer, R.W., O'Keeffe, J.H. (1990). Downstream effects of impoundments on the water chemistry of the Buffalo River (Eastern Cape), South Africa. Hydrobiologia, 202(1-2), 71-83. https://doi.org/10.1007/bf02208128 ; Pawar, S.B., Shembekar, V.S. (2012). Studies on the physico-chemical parameters of reservoir at Dhanegoan district Osmanabad (MS). India. Journal of Experimental Sciences, 3(5), 51-54. ; Puczyńska, I., Skrzypski, J. (2009). Integracja działań biologicznych, technicznych jako podstawa intensyfikacji procesów samooczyszczania się zbiorników zaporowych (na przykładzie Zbiornika Sulejowskiego), Ecological Chemistry and Engineering S, 16(S2), 221-235. ; Romanescu, G., Miftode, D., Pintilie, A.M., Stoleriu, C.C., Sandu, I. (2016). Water quality analysis in mountain freshwater: Poiana Uzului Reservoir in the Eastern Carpathians. Revista de Chimie, 67(11), 2318-326. ; Savichev, O.G., Matveenko, I.A. (2013). Evaluation of chemical composition changes of surface water in Boguchan Reservoir (Siberia, Russia). Hydrological Sciences Journal, 58(3), 706-715. https://doi.org/10.1080/02626667.2012.752576 ; Stuchlík, E., Hořická, Z., Prchalová, M., Křeček, J., & Barica, J. (1997). Hydrobiological investigation of three acidified reservoirs in the Jizera Mountains, the Czech Republic, during the summer stratification. Canadian Technical Report of Fisheries and Aquatic Sciences, vol. 2155, pp. 56-64. ; The national report on the state and protection of the environment in the Tver region in 2012. (2013). Tver: Doklad o sostojanii i ob ohrane okružajuŝej sredy v Tverskoj oblasti v 2012 godu. ; Thornton, K.W., Kimmel, B.L., Payne, F.E. (1990). Reservoir limnology: Ecological perspectives. New York: Willey. ; Van Cappellen, P., Maavara, T. (2016). Rivers in the Anthropocene: global scale modifications of riverine nutrient fluxes by damming. Ecohydrology and Hydrobiology, 16(2), 106-111. https://doi.org/10.1016/j.ecohyd.2016.04.001 ; Varol, M., Gokot, B., Bekleyen, A., Sen, B. (2012). Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey. Catena, 92, 11-21. https://doi.org/10.1016/j.catena.2011.11.013 ; WHO (World Health Organization). (2011). Guidelines for drinking water quality, Geneva. ; Viviroli, D., Weingartner, R. (2004). The hydrological significance of mountains: from regional to global scale. Hydrology and Earth System Sciences, 8(6), 1017-1030. https://doi.org/10.5194/hess-8-1017-2004 ; Wiatkowski, M. (2011). Influence of Słup dam reservoir on flow and quality of water in the Nysa Szalona river. Polish Journal of Environmental Studies, 20, 469-478. ; Wiejaczka, Ł., Prokop, P., Kozłowski, R., & Sarkar, S. (2018). Reservoir's impact on the water chemistry of the Teesta River mountain course (Darjeeling Himalaya). Ecological Chemistry and Engineering S, 25(1), 73-88. https://doi.org/10.1515/eces-2018-0005 ; Zhao, Y., Zheng, B., Jia, H., Chen, Z. (2019). Determination sources of nitrates into the Three Gorges Reservoir using nitrogen and oxygen isotopes. Science of the Total Environment, 687, 128-136. https://doi.org/10.1016/j.scitotenv.2019.06.073

Relation:

Geographia Polonica

Volume:

93

Issue:

1

Start page:

121

End page:

133

Resource type:

Text

Detailed Resource Type:

Artykuł

Format:

Rozmiar pliku 0,3 MB

Resource Identifier:

0016-7282 (print) ; 2300-7362 (online) ; 10.7163/GPol.0166

Source:

CBGiOS. IGiPZ PAN, sygn.: Cz.2085, Cz.2173, Cz.2406 ; click here to follow the link

Language:

eng

Language of abstract:

eng

Rights:

Licencja Creative Commons Uznanie autorstwa 4.0

Terms of use:

Zasób chroniony prawem autorskim. [CC BY 4.0 Międzynarodowe] Korzystanie dozwolone zgodnie z licencją Creative Commons Uznanie autorstwa 4.0, której pełne postanowienia dostępne są pod adresem: ; -

Digitizing institution:

Instytut Geografii i Przestrzennego Zagospodarowania Polskiej Akademii Nauk

Original in:

Centralna Biblioteka Geografii i Ochrony Środowiska Instytutu Geografii i Przestrzennego Zagospodarowania PAN

Projects co-financed by:

Program Operacyjny Polska Cyfrowa, lata 2014-2020, Działanie 2.3 : Cyfrowa dostępność i użyteczność sektora publicznego; środki z Europejskiego Funduszu Rozwoju Regionalnego oraz współfinansowania krajowego z budżetu państwa

×

Citation

Citation style: